初二數學知識點整理

初二數學上冊知識點總結

初二數學下冊知識點總結

1

一、平移與旋轉旋轉

1.旋轉的定義:?在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。2.旋轉的性質:?旋轉后得到的圖形與原圖形之間有:對應點到旋轉中心的距離相等,旋轉角相等。中心對稱

1.中心對稱的定義:?如果一個圖形繞某一點旋轉180度后能與另一個圖形重合,那么這兩個圖形叫做中心對稱。2.中心對稱圖形的定義:?如果一個圖形繞一點旋轉180度后能與自身重合,這個圖形叫做中心對稱圖形。3.中心對稱的性質:?在中心對稱的兩個圖形中,連結對稱點的線段都經過對稱中心,并且被對稱中心平分。軸對稱

1.軸對稱的定義:?如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對? 稱圖形,這條直線叫做對稱軸。2.軸對稱圖形的性質:?①角的平分線上的點到這個角的兩邊的距離相等。???②線段垂直平分線上的點到這條線段兩個端點的距離相等。??③等腰三角形的“三線合一”。3.軸對稱的性質:對應點所連的線段被對稱軸垂直平分,對應線段/對應角相等。圖形變換

圖形變換的定義:圖形的平移、旋轉、和軸對稱統稱為圖形變換。

1

二、函數及其相關概念??1、變量與常量在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數。

2、函數解析式用來表示函數關系的數學式子叫做函數解析式或函數關系式。使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。

3、函數的三種表示法及其優缺點(1)解析法兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。(2)列表法把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。(3)圖像法用圖像表示函數關系的方法叫做圖像法。

4、由函數解析式畫其圖像的一般步驟(1)列表:列表給出自變量與函數的一些對應值(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

1

三、正比例函數和一次函數

1、正比例函數和一次函數的概念一般地,如果(k,b是常數,k0),那么y叫做x的一次函數。特別地,當一次函數中的b為0時,(k為常數,k0)。這時,y叫做x的正比例函數。

2、一次函數的圖像所有一次函數的圖像都是一條直線

3、一次函數、正比例函數圖像的主要特征:一次函數的圖像是經過點(0,b)的直線;正比例函數的圖像是經過原點(0,0)的直線。

4. 正比例函數的性質一般地,正比例函數有下列性質:(1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;(2)當k

5、一次函數的性質一般地,一次函數有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k

6、正比例函數和一次函數解析式的確定確定一個正比例函數,就是要確定正比例函數定義式(k0)中的常數k。確定一個一次函數,需要確定一次函數定義式(k0)中的常數k和b。解這類問題的一般方法是待定系數法。

免責聲明:本文僅代表文章作者的個人觀點,與本站無關。其原創性、真實性以及文中陳述文字和內容未經本站證實,對本文以及其中全部或者部分內容文字的真實性、完整性和原創性本站不作任何保證或承諾,請讀者僅作參考,并自行核實相關內容。

http://www.hqucmw.tw/style/images/nopic.gif
我要收藏
贊一個
踩一下
分享到
?
分享
評論
首頁
四川金7乐奖金设置